Accepted Papers

đź“„ View Accepted Papers on OpenReview


Learning Diffusion Models with Flexible Representation Guidance (Contributed Talk)
Chenyu Wang, Cai Zhou, Sharut Gupta, Zongyu Lin, Stefanie Jegelka, Stephen Bates, Tommi Jaakkola
NextGenPLM: A Novel Structure-Infused Foundational Protein Language Model for Antibody Discovery and Optimization (Contributed Talk)
Abhinav Gupta, Ruijiang Li, Camila Leal, Madhumati Sevvana, Brian C Mackness, Ryan G Casner, Joseph D Batchelor, Anna Park, Michael Bailey, Lorenzo Kogler Anele, Sven Jager, Maria Wendt, Yves Fomekong Nanfack, Norbert Furtmann, Yu Qiu
Towards functional annotation with latent protein language model features (Contributed Talk)
Jake Silberg, Elana Simon, James Zou
3D-SBDD meets LLM: Towards FDA-Level Drug Design
Bowen Gao, Yanwen Huang, Yiqiao Liu, Wenxuan Xie, Bowei He, Haichuan Tan, Wei-Ying Ma, Ya-Qin Zhang, Yanyan Lan
A Foundation Model for Mass Spectrometry Proteomics
Justin Sanders, Melih Yilmaz, Jacob H. Russell, William E Fondrie, Wout Bittremieux, Nicholas M. Riley, Sewoong Oh, William Noble
A Genomic Language Model for Zero-Shot Prediction of Promoter Indel Effects
Courtney A. Shearer, Felix Teufel, Rose Orenbuch, Christian J. Steinmetz, Daniel Ritter, Erik Xie, Artem Gazizov, Aviv Spinner, Jonathan Frazer, Mafalda Dias, Pascal Notin, Debora Susan Marks
A Look at the Isotropy of Pretrained Protein Language Models
Sheikh Azizul Hakim, Kowshic Roy, M Saifur Rahman
A Multi-Modal Large Language Model for Free-Form, Open-Ended, and Interactive Prediction of Properties and Mechanisms of Candidate Drug Molecules
Youwei Liang, Ruiyi Zhang, Zinnia Ma, Digvijay Singh, Yongce Li, Mingjia Huo, Chengzhan Gao, Hamidreza Rahmani, Satvik Bandi, Li Zhang, Robert Weinreb, Atul Malhotra, Danielle A. Grotjahn, Linda Awdishu, Trey Ideker, Michael K Gilson, Pengtao Xie
AIDO.Tissue: Spatial Cell-Guided Pretraining for Scalable Spatial Transcriptomics Foundation Model
Jing Gong, Yixuan Wang, Nicholas Ho, Xingyi Cheng, Le Song, Eric P. Xing
Advancing Knotted Protein Design with ESM3: Guided Generation and Topological Insights
Petr Simecek, Eva Klimentová
AnnoDPO: Protein Functional Annotation Learning with Direct Preference Optimization
Zixuan Jiang, Renjing Xu
ATOMICA: Learning Universal Representations of Intermolecular Interactions
Ada Fang, Zaixi Zhang, Andrew Zhou, Marinka Zitnik
Benchmarking Vision-Language Contrastive Methods for Medical Representation Learning
Shuvendu Roy, Yasaman Parhizkar, Franklin Ogidi, Vahid Reza Khazaie, Michael Colacci, Ali Etemad, Elham Dolatabadi, Arash Afkanpour
BioLangFusion: Multimodal Fusion of DNA, mRNA, and Protein Language Models
Amina Mollaysa, Artem Moskalev, Pushpak Pati, Tommaso Mansi, Mangal Prakash, Rui Liao
Cell-Type-Aware Pooling for Robust Sample Classification in Single-Cell RNA-seq Data
Soorin Yim, Kyungwook Lee, Dongyun Kim, Sungjoon Park, Doyeong Hwang, Soonyoung Lee, Amy Dunn, Daniel Gatti, Elissa Chesler, Kristen O’Connell, Kiyoung Kim
Challenges and Guidelines in Deep Generative Protein Design: Four Case Studies
Tianyuan Zheng, Alessandro Rondina, Gos Micklem, Pietro Lio
Closing the gap between the biology and the clinic with a foundation model of immunology and inflammation
Aziz Fouché, Apolline Bruley, Matthew Corney, Pierre Marschall, Vincent Bouget, Julien Duquesne
Conditional Normalizing Flows for the Design of T Cell Therapies
Samarth Kadaba, Alexander K Eapen, Kristin C. Y. Tsui, Kuan Pang, Theodore L Roth, Zinaida Good
DeepSeq: High-Throughput Single-Cell RNA Sequencing Data Labeling via Web Search-Augmented Agentic Generative AI Foundation Models
Saleem Abdul Fattah Ahmed Al Dajani, Abel Sanchez, John R Williams
Describe Anything in Medical Images
Xi Xiao, Yunbei Zhang, Thanh-Huy Nguyen, Ba-Thinh Lam, Janet Wang, Lin Zhao, Jihun Hamm, Tianyang Wang, Xingjian Li, Xiao Wang, Hao Xu, Tianming Liu, Min Xu
DisProtEdit: Exploring Disentangled Representations for Multi-Attribute Protein Editing
Max Ku, Sun Sun, Hongyu Guo, Wenhu Chen
Enriched Instruction-Following Graph Alignment for Efficient Medical Vision-Language Models
Duy Minh Ho Nguyen, Nghiem Tuong Diep, Trung Quoc Nguyen, Hoang-Bao Le, Tai Nguyen, Anh-Tien Nguyen, TrungTin Nguyen, Nhat Ho, Pengtao Xie, Roger Wattenhofer, Daniel Sonntag, James Zou, Mathias Niepert
Evaluating Multi-Modal Models for Enzyme-Reaction Retrieval
Annika Viswesh, Jason Yang, Frances H. Arnold, Yisong Yue
From Vision to Graph Self-Supervised Learning in Digital Pathology
Sevda Öğüt, Carlos Hurtado, Cédric Vincent-Cuaz, Natalia Dubljevic, Vaishnavi Subramanian, Dorina Thanou, Pascal Frossard
GeneChat: A Multi-Modal Large Language Model for Gene Function Prediction
Shashi Dhanasekar, Pengtao Xie, Akash Saranathan
H&Enium, Applying Foundation Models to Computational Pathology and Spatial Transcriptomics to Learn an Aligned Latent Space
Marc Glettig, Tim Ehrensperger, Josephine Yates, Valentina Boeva
HPP-Voice: A Large-Scale Evaluation of Speech Embeddings for Multi-Phenotypic Classification
David Krongauz, Hido Pinto, Sarah Kohn, Yanir Marmor, Eran Segal
Ibex: Pan-immunoglobulin structure prediction
Frederic A Dreyer, Karolis Martinkus, Jan Ludwiczak, Brennan Abanades, Robert G Alberstein, Pranav Rao, Jae Hyeon Lee, Richard Bonneau, Andrew Martin Watkins, Franziska Seeger
Integrating Pathology Foundation Models and Spatial Transcriptomics for Cellular Decomposition from Histology Images
Yutong Sun, Sichen Zhu, Peng Qiu
Joint Diffusion Sampling via Positive-Unlabeled Guidance for Multi-Modal Data
Matt Raymond, Yilun Zhu, Jianxin Zhang, Angela Violi, Clayton Scott
KD-CPT: A Knowledge-Driven Cellular Phenotypic Transdifferentiation Model
Lei Xin, Zhenglun Kong, Xiaoshuo Yan, Sijia Yan, Zeheng Wang, Wuzhe Fan, Hao Tang
Knowledge Graph-Augmented DNA Representation Learning
Fengyu Cai, Erik Kubaczka, Shaobo Cui, Heinz Koeppl
Leveraging the Structure of Medical Data for Improved Representation Learning
Andrea Agostini, Sonia Laguna, Alain Ryser, Samuel Ruiperez-Campillo, Moritz Vandenhirtz, Nicolas Deperrois, Farhad Nooralahzadeh, Michael Krauthammer, Thomas M. Sutter, Julia E Vogt
Ligand Iterative Sampling for Affinity Refinement and Drug Discovery (LISARDD)
Valentin BADEA, Shyam Chandra, John Lin
MiST: Understanding the Role of Mid-Stage Scientific Training in Developing Chemical Reasoning Models
Andres M Bran, Tong Xie, Shai Pranesh, Jeremy Goumaz, Xuan Vu Nguyen, David Ming Segura, Ruizhi Xu, Jeffrey Meng, Dongzhan Zhou, Wenjie Zhang, Philippe Schwaller
Molecularly informed analysis of histopathology images using natural language
Moritz Schaefer, Kalin Nonchev, Animesh Awasthi, Jake Burton, Viktor Koelzer, Gunnar Ratsch, Christoph Bock
Multi-Modal Interpretable Graph for Competing Risk Prediction with Electronic Health Records
Munib Mesinovic, Peter Watkinson, Tingting Zhu
Multi-Modal Large Language Model Enables Protein Function Prediction
Han Guo, Mingjia Huo, Xingyi Cheng, Digvijay Singh, Hamidreza Rahmani, Shen Li, Philipp Gerlof, Trey Ideker, Danielle Grotjahn, Elizabeth Villa, Le Song, Pengtao Xie
Multi-Modal Medical Image Augmentation for Controlled Heterogeneity and Fair Outcomes
Soo Yong Kim, Seunghyeok Hong
Multi-Objective-Guided Discrete Flow Matching for Controllable Biological Sequence Design
Tong Chen, Yinuo Zhang, Sophia Tang, Pranam Chatterjee
Multi-Objective-Guided Generative Design of mRNA with Therapeutic Properties
Sawan Patel, Sophia Tang, Yinuo Zhang, Pranam Chatterjee, Sherwood Yao
Multimillion cell self-supervised representation learning enables organ-scale tissue niche discovery
Alex Jihun Lee, Alma Dubuc, Michael Kunst, Shenqin Yao, Nicholas Lusk, Lydia Ng, Hongkui Zeng, Bosiljka Tasic, Reza Abbasi-Asl
Multimodal Benchmarking of Foundation Model Representations for Cellular Perturbation Response Prediction
Euxhen Hasanaj, Elijah Cole, Shahin Mohammadi, Sohan Addagudi, Xingyi Zhang, Le Song, Eric P. Xing
Multimodal Modeling of CRISPR-Cas12 Activity Using Foundation Models and Chromatin Accessibility Data
Azim Dehghani Amirabad, Yanfei Zhang, Artem Moskalev, Sowmya Rajesh, Tommaso Mansi, Shuwei Li, Mangal Prakash, Rui Liao
Multimodal Protein Language Models for Flexibility Prediction and Loop Design
Tyler Verhaar, Samuel W. K. Wong
PM1: A Foundation Model Fusing Genotype, Phenotype, and Image for Precision Medicine
Margarita Geleta, Christophe Thomassin, Marçal Comajoan Cara, David Bonet, Aina Luis Vidal, Benet Oriol Sabat, Daniel Mas Montserrat, Alexander G. Ioannidis
Promoter Sequence Generation using Homology Prompting
Erik Xie, Courtney A. Shearer, Ruben Weitzman, Pascal Notin, Debora Susan Marks
ProteinAligner: A Tri-Modal Contrastive Learning Framework for Protein Representation Learning
Li Zhang, Han Guo, Leah Schaffer, Young Su Ko, Digvijay Singh, Danielle Grotjahn, Elizabeth Villa, Michael K Gilson, Wei Wang, Trey Ideker, Eric P. Xing, Pengtao Xie
ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding
Yijia Xiao, Edward Sun, Yiqiao Jin, Qifan Wang, Wei Wang
Rapid and Reproducible Multimodal Biological Foundation Model Development with AIDO.ModelGenerator
Caleb Ellington, Dian Li, Shuxian Zou, Elijah Cole, Ning Sun, Sohan Addagudi, Le Song, Eric P. Xing
RepoLLM: A Multi-modal Foundation Model for Drug Repurposing via Alignment of Molecules, EHRs, and Knowledge Graphs
Zichao Li, Zong Ke
Retrieval Augmented Protein Language Models for Protein Structure Prediction
Pan Li, Xingyi Cheng, Le Song, Eric P. Xing
Robust Multi-Omics Integration from Incomplete Modalities Significantly Improves Prediction of Alzheimer’s Disease
Sungjoon Park, Kyungwook Lee, Soorin Yim, Doyeong Hwang, Dongyun Kim, Soonyoung Lee, Amy Dunn, Daniel Gatti, Elissa Chesler, Kristen O'Connell, Kiyoung Kim
Scaling up measurement noise scaling laws
Igor Sadalski, Dan Raviv, Jonathan S Rosenfeld, Allon M Klein, Gokul Gowri
Segmentation Helps Understanding: Mask-Infused Vision-Language Pre-training for 3D Medical Images
Yuqi Hu, Xufang Luo, Zilong Wang, Dongsheng Li, Lili Qiu
Self-Supervised Representation Learning for Microbiome Improves Downstream Prediction in Data-Limited Settings and Cross-Cohort Generalizability
Liron Zahavi, Zachary Levine, Eran Segal
SHIVER: Somatic Hypermutation Informed Vocabulary Encoder Representations
Chiho Im, Artem Mikelov, Ryan Zhao, Anshul Kundaje, Scott D. Boyd
SOAPIA: Siamese-Guided Generation of Off Target-Avoiding Protein Interactions with High Target Affinity
Sophia Vincoff, Oscar Davis, Ismail Ilkan Ceylan, Alexander Tong, Joey Bose, Pranam Chatterjee
Stabilizing protein fitness predictors via the PCS framework
Omer Ronen, Alex Y. Zhao, Ron Boger, Chengzhong Ye, Bin Yu
SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding Using Vision-Language Foundation Models
Edward Ju, Adarsh Kumarappan, Shrujana S Kunnam, Raaghav Malik, Dhruv Sheth
TICA-Based Free Energy Matching for Machine-Learned Molecular Dynamics
Alexander Aghili, Andy Bruce, Daniel Sabo, Razvan Marinescu
Temporal Representation Learning for Ultrasound Analysis using Masked Modeling
Yves Dominic Stebler, Thomas M. Sutter, Ece Ozkan, Julia E Vogt
Towards foundation models that learn across biological scales
Jeremie Kalfon, Laura Cantini, Gabriel Peyré
Towards Molecular Conformer Generation with Language Models
Menua Bedrosian, Hrant Khachatrian
Transfer Learning of Condition-Specific Perturbation in Gene Interactions: Towards Multi-modal Foundational Modeling of Drug Response
Dongmin Bang, Bonil Koo, Sun Kim
Transferring Cell-level Drug Response to Patient via Tumor Heterogeneity-Aware Alignment and Gene-level Foundational Models
Inyoung Sung, Dongmin Bang, Sun Kim, Sangseon Lee
TRIDENT: Tri-Modal Molecular Representation Learning with Taxonomic Annotations and Local Correspondence
Feng Jiang, Mangal Prakash, Hehuan Ma, Jianyuan Deng, Yuzhi Guo, Amina Mollaysa, Tommaso Mansi, Rui Liao, Junzhou Huang
Unified Representation of Genomic and Biomedical Concepts through Multi-Task, Multi-Source Contrastive Learning
Hongyi Yuan, Suqi Liu, Zongxin Yang, Kelly Cho, Katherine P. Liao, Alexandre Pereira, Tianxi Cai
Uncertainty-Aware Discrete Diffusion Improves Protein Design
Sazan Mahbub, Christoph Feinauer, Caleb Ellington, Le Song, Eric P. Xing